UniSoft GS Geotechnical Solutions

528 River Road, Ottawa, Ontario, Canada, K1V 1E9

E: info@unisoftGS.com

A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations

Bengt H. Fellenius, Dr. Tech, P.Eng.

and

Pierre A. Goudreault, B.A.Sc., P.Eng. President, UniSoft Geotechnical Solutions Ltd.

Fellenius, B.H. and Goudreault P.A., , 2015. Background to UniPile. Segundo Congreso Internacional de Fundaciones Profundas de Bolivia, Santa Cruz May 12-15, Lecture, 58 p.

The Foundation Pile

Q = Load

- Q_d = Dead load, Sustained load
- Q₁ = Live load, Transient load
- r_s = Unit shaft resistance
- R_s = Total shaft resistance
- q_n = Unit negative skin friction
- $Q_n = Drag force$
- $r_t = Unit$ toe resistance
- R_t = Total toe resistance
- L = Pile length
- D = Embedment depth
- NP = Neutral Plane

 $A_s = Circumferential area (m²/m; ft²/ft)$

 A_t = Pile toe area (m²; ft²)

A pile toe is really a footing with a long stem, so the bearing capacity formula applies, or does it?

The Bearing Capacity Formula $r_{u} = c'N_{c} + q'N_{q} + 0.5b\gamma'N_{\gamma}$

where

- r_u = ultimate unit resistance of the footing
 - c' = effective cohesion intercept
 - B = footing width
 - q' = overburden effective stress at the foundation level
 - γ^{\prime} = average effective unit weight of the soil below the foundation
- N_c , N_q , N_{γ} = non-dimensional bearing capacity factors

Factor of Safety, F_s

$$F_s = r_u/q$$

(q = Q/footing area)

 $r_t = q' N_q$

N_α was determined in tests—model-scale tests

Min to max N_q ratio can be ≈200 for the same φ'!

The log-scale plot is necessary to show all curves with some degree of resolution.

Why is it that nobody has realized that something must be wrong with the theory for the main factor, the N_q, to vary this much?

Let's compare to the reality?

Results of static loading tests on **0.25 m to 0.75 m** square **footings** in well graded <u>sand</u> (Data from Ismael, 1985)

Texas A&M Settlement Prediction Seminar

Load-Movement of Four Footings on Sand Texas A&M University Experimental Site J-L Briaud and R.M. Gibbens 1994, ASCE GSP 41

The measured data normalized and with a fit of a q-z curve

Ultimate Shaft Resistance can be a reality. An ultimate value can be determined. However, the required movement for a specific case can vary between a mm or two through 50 mm and beyond!

Ultimate Toe Resistance does not exist other than as a definition of load at a certain movement

..., but Ultimate Toe Resistance can never be. Toe capacity is a myth!

Analysis Methods for Determining Shaft Resistance, r_s

The Total Stress Method

The SPT Method

The CPT and CPTU Methods

The Beta Method

Piles in Clay

Total Stress Method

The undrained shear strength can be obtained from unconfined compression tests, field vane shear tests, or, to be fancy, from consolidated, undrained triaxial tests. Or, better, back-calculated from the results of instrumented static loading tests. However, if those tests indicate that the unit shaft resistance is constant with depth in a homogeneous soil, don't trust the records! Also, the analysis results would only fit a pile of the same embedment length as the test pile.

Piles in Sand

The SPT Method

Meyerhof (1976)

 $r_s = n N D$

Which value would you pick for use in calculating pile capacity?

- where r_s = ultimate unit **shaft** resistance (N/m³)
 - n = a coefficient
 - N = average N-index along the pile shaft (taken as a pure number)
 - D = embedment depth
 - n = $2 \cdot 10^3$ for driven piles and $1 \cdot 10^3$ for bored piles (N/m³) [English units: 0.02 for driven piles and 0.01 for bored piles (t/ft³)]

For unit toe resistance, r_t , Meyerhof's method applies the N-index at the pile toe times a toe coefficient = $400 \cdot 10^3$ for driven piles and $120 \cdot 10^3$ for bored piles (N/m³) [English units: n = 4 for driven piles and n = 1 for bored piles (t/ft³)]

Piles in Sand

The SPT Method

Decourt (1988; 1995)

 $r_s = \alpha (2.8N + 10) D$

Shaft Coefficient α

where	r_s	=	ultimate unit shaft resistance	e (N/m³)	
-------	-------	---	--------------------------------	-----	-------	--

- α = a coefficient
- N = average N-index along the pileshaft (taken as a pure number)
- D = embedment depth

Soil Type	Displacement	Non-Displacement
Туре	Piles	Piles
Sand	1•10 ³	0.6•10 ³
Sandy Silt	1•10 ³	0.5•10 ³
Clayey Silt	1•10 ³	1•10 ³
Clav	1•10 ³	1•10 ³

For unit toe resistance in sand, Decourt's method applies the N-index at the pile toe times a toe coefficient = $325 \cdot 10^3$ for driven piles and $165 \cdot 10^3$ for bored piles (N/m³)

CPT and CPTU Methods for Calculating the Ultimate Resistance (Capacity) of a Pile

Schmertmann and Nottingham (1975 and 1978)

deRuiter and Beringen (1979)

Meyerhof (1976)

LCPC, Bustamante and Gianeselli (1982)

ICP, Jardine, Chow, Overy, and Standing (2005)

Eslami and Fellenius (1997)

The CPT and CPTU Methods

Schmertmann and Nottingham (1975 and 1978)

$$\begin{aligned} r_t &= C_{OCR} q_{ca} \\ r_s &= K_f f_s \quad \text{CLAY and SAND} \\ r_s &= K_c q_c \quad \text{SAND (alternation)} \end{aligned}$$

ernative)

where	$r_t =$	pile unit toe resistance (<15 MPa)
	C _{OCR} =	correlation coefficient governed by the
		overconsolidation ratio, OCR, of the soil
	q _{ca} =	arithmetic average of q_c in an influence zone ^{*)}

- $K_c =$ a dimensionless coefficient; a function of the pile type, ranging from 0.8 % through 1.8 %
- cone resistance (total; uncorrected for pore q_c = pressure on cone shoulder)

*) The Influence zone is 8b above and 4b below pile toe

Eslami and Fellenius (1997)

 $r_t = C_t q_{Eg}$ $r_s = C_s q_E$

 $C_t = \frac{1}{3b}$ b in metre $C_t = \frac{12}{h}$ b in inch

Shaft Correlation Coefficient				
Soil Type ^{**)}				
C _s				
Soft sensitive soils	8.0 %			
Clay	5.0 %			
Stiff clay and				
Clay and silt mixture	2.5 %			
Sandy silt and silt	1.5 %			
Fine sand and silty sand	1.0 %			
Sand to sandy gravel	0.4 %			

⁽⁾ determined directly from the **CPTU** soil profiling

b pile diameter =

pile unit toe resistance r, =

C_t = toe correlation coefficient (toe adjustment factor)—equal to unity in most cases

influence^{*)} geometric average of the cone stress over the **q**_{Eg} zone after correction for pore pressure on the shoulder and adjustment to "effective" stress

pile unit shaft resistance = r,

- shaft correlation coefficient, which is a function of soil C, = type determined from the CPT/CPTU soil profiling chart
- cone stress after correction for pore pressure q_F = on the cone shoulder and adjustment to "effective" stress

^{*)} The Influence zone is 8b above and 4b below pile toe

Pile Capacity or, rather, Load-Transfer follows principles of effective stress and is best analyzed using the Beta method

Shaft Resistance in **Sand and in Clay** — Beta-method

Unit Shaft Resistance, r_s

$$r_s = \beta \sigma'_v$$

$$r_s = \tan\phi' K_s \sigma'_v$$

where

r_s = unit shaft resistance

 β = Bjerrum-Burland coefficient

 σ'_v = effective overburden stress

$$K_s$$
 = earth stress ratio = σ'_h / σ'_v

Approximate Range of Beta-coefficients

SOIL TYPE	Phi	Beta	
Clay	25 - 30	0.20 - 0.35	 0.05 - 0.80+ !
Silt	28 - 34	0.25 - 0.50	
Sand	32 - 40	0.30 - 0.90	
Gravel	35 - 45	0.35 - 0.80	

These ranges are typical values found in some cases. In any given case, actual values may deviate considerably from those in the table.

Practice is to apply different values to driven as opposed to bored piles, but

Total Resistance ("Capacity"); Load Distribution

$$Q_{ult} = R_s + R_t$$

 $Q_{ult} = Q_u$ = Ultimate resistance = Capacity R_s = Shaft resistance R_t = Toe resistance

$$Q_z = Q_u - \int A_s \beta \sigma_z dz = Q_u - R_s$$

Effective stress—Beta-analysis—is the method closest to the real response of a pile to an imposed load

44 ft embedment, 12.5 inch square precast concrete driven through compact silt and into dense sand

Brazil 2004: Bored pile (Omega screw pile) 23 m long, 310 mm diameter

Static Loading Test on a 23 m 310 mm bored pile

Load-Movement Response

Prediction Compilation

Compilation of predicted load-movement curves and capacities Bolivia 2013

Pore Pressure Dissipation

Paddle River, Alberta, Canada (Fellenius 2008)

Effective Stress Analysis

Load Distributions—Measured in the static loading tests and fitted to UniPile analysis

If we want to know the load distribution, we

can measure it. But, what we measure is the increase of load in the pile due to the load applied to the pile head. What about the load in the pile that was there before we started the test?

That is, the Residual load.

Example from Gregersen et al., 1973

Distribution of residual load in Piles DA and BC before start of the loading test

Load and resistance in Pile DA for the maximum test load

Presence of residual load is not just of academic interest

Separation of shaft and toe resistances

According to the Meyerhof et al.

More likely

Meyerhof, G.G., Brown, J.D., and Mouland, G.D., 1981. Predictions of friction capacity in a till. Proceedings of the ICSMFE, Stockholm, June 15-19, Vol. 2, pp. 777-780

t-z and q-z functions

Strain-hardening

Elastic-plastic

Strain-softening

Note, the diagram assumes that all curves pass through the point for 100-% load and 5-mm movement. However, the movement can vary widely in a specific case .

Assigning applicable t-z and q-z functions is fundamental to the analysis and vital for determining pile response and achieving reliable design of piled foundations. Confidence in a design is obtained from back-analysis of results of static loading tests. Next is an example of such analysis

A bidirectional test was performed on a 500-mm diameter, 21 m long, bored pile constructed through compact to dense sand by driving a steel-pipe to full depth, cleaning out the pipe, while keeping the pipe filled with betonite slurry, withdrawing the pipe, and, finally, tremie-replacing the slurry with concrete. The bidirectional cell (BDC) was attached to the reinforcing cage inserted into the fresh concrete. The BDC was placed at 15 m depth below the ground surface.

The pile will be one a group of 16 piles (4 rows by 4 columns) installed at a 4-diameter center-to-center distance. Each pile is assigned a working load of 1,000 kN.

The sand becomes very dense at about 35 m depth

compact SAND

CLAY

compact

SAND

dense SAND

The soil profile determined by CPTU and SPT

The results of the bidirectional test

Acknowledgment: The bidirectional test data are courtesy of Arcos Egenharia de Solos Ltda., Belo Horizonte, Brazil.

To fit a simulation of the test to the results, first input is the effective stress parameter (ß) that returns <u>the maximum measured</u> upward load (840 kN), which was measured at the maximum upward movement (35 mm). Then, "promising" t-z curves are tried until one is obtained that, for a specific coefficient returns a fit to the measured upward curve. Then, for the downward fit, t-z and q-z curves have to be tried until a fit of the downward load (840 kN) and the downward movement (40 mm) is obtained.

Usually for large movements, as in the example case, the t-z functions show a elasticplastic response. However, for the example case, no such assumption fitted the results. In fact, the best fit was obtained with the Ratio Function for the entire length of the pile shaft.

The final fit of simulated curves to the measured

The test pile was not instrumented. Had it been, the load distribution of the bidirectional test as determined from the gage records, would have served to further detail the evaluation results. Note the below adjustment of the BDC load for the buoyant weight (upward) of the pile and the added water force (downward).

The analysis results appear to suggest that the pile is affected by a filter cake along the shaft and probably also a reduced toe resistance due to debris having collected at the pile toe between final cleaning and the placing of the concrete.

The final fit establishes the soil response and allows the equivalent head-down loading- test to be calculated

When there is no obvious point on the pile-head load-movement curve, the "capacity" of the pile has to be determined by one definition or other-there are dozens of such around. The first author prefers to define it as the pile-head load that resulted in a 30-mm pile toe movement. As to what safe working load to assign to a test, it often fits quite well to the pile head load that resulted in a 5-mm toe movement. The most important aspect for a safe design is not the "capacity" found from the test data, but what the settlement of the structure supported by the pile(s) might be. How to calculate the settlement of a piled foundation is addressed a few slides down.

The final fit establishes also the equivalent head-down distributions of shaft resistance and equivalent head-down load distribution for the maximum load (and of any load in-between, for that matter). Load distributions have also been calculated from the SPT-indices using the Decourt, Meyerhof, and O'Neil-Reese methods, as well that from the Eslami-Fellenius CPTU-method.

By fitting a UniPile simulation to the measured curves, we can determine all pertinent soil parameters, the applicable t-z and q-z functions, and the distribution of the equivalent head-down load-distribution. The results also enable making a comparison of the measured pile response to that calculated from the in-situ test methods.

However, capacity of the single pile is just one aspect of a piled foundation design. As mentioned, the key aspect is the foundation settlement.

Note, the analysis results suggest that the pile was more than usually affected by presence of a filter cake along the pile shaft and by some debris being present at the bottom of the shaft when the concrete was placed in the hole. An additional benefit of a UniPile analysis.

SETTLEMENT

Load placed on a pile causes downward movements of the pile head due to:

- **1.** 'Elastic' compression of the pile.
- 2. Load transfer movement -- the movement response of the soil.
- **3. Settlement below the pile toe** due to the increase of stress in the soil. This is not important for single piles or small pile groups, but can be decisive for large pile groups, and where thick soil layers exist below the piles that receive increase of stress from sources other than the piles.

Settlement of a piled foundation

Distribution of stress for calculation of settlement

The depth to the Neutral Plane is 15.5 m. That depth is where the dead load applied to the pile starts to be distributed out into the soil.

The Unified Design Method developed by the first author considers this effect by widening the pile group foot-print area by a 5(V):1(H) from the N.P to the pile toe into an "Equivalent Raft" and applying the dead load to the raft.

Many other, very similar "Equivalent-Raft" approaches to calculating settlement of piled foundation are common in the industry. UniPile can also perform any such analysis as per the User preference and input.

The pile group (piled foundation) settlement as calculated by UniPile

For settlement calculations that include aspects of time, i.e., consolidation and secondary compression, the analysis is best performed in UniSettle, UniPile's "companion".

Using UniPile 5.0 UniPile 5.0

UniPile 5.0 Interface

Project General Information

Settings and Defaults

General Input	Settings		Image: Second se
- Settings	🗆 General Settings		
Depth Points	Water Density (kg/m ³)	1,000	
📮 Pile Data	Gravity (m/s ²)	9.81	
New Pile	🗆 General Analysis		
New Group	Period	Final	
Soil Layers	Stress Distribution	Boussinesq	Static
New Layer	Pile Resistance Method	Static	Static
Pore Pressure	🗆 Residual Load	\square	Eslami & Fellenius (CPTu)
Final Pore Pressure	Status	Disregard	Schmertmann & Nottingham (CPT)
SPT_CPT/CPTu Data	Loading Test Simulation		deRuiter & Beringen - Dutch (CPT)
New Data	Max. Toe Mymt (mm)	40.0	Bustamente - LCPC (CPT)
- Loads	Depth of Cell (m)	15.00	Meverhof (SPT)
New Load	Shaft Buovant Weight	Include	Decourt (SPT)
Excavations	□ Analysis Options		O'Neill & Reese (SPT)
New Excavation	Embedment vs Depth	Yes	
E t-z/q-z Functions	Neutral Plane vs D.L.	Yes	
New Function	Pile Settlement	Yes	
	Head-Down Loading Test	Yes	
	Bidirectional Loading Test	Yes	
	· · · · · · · · · · · · · · · · · · ·		

Additional Depth Points

Pile Properties and Geometry

 General Input Project Information Settings Depth Points 	Pile: Bolivia Demo Pile 土 〒 ★ 塞		3		
🖃 Pile Data	General				
Bolivia Demo Pile	Name	Bolivia Demo Pile			
New Group	Description	21 m, 500 mm Dia. Concrete Pile			
🖃 Soil Layers	X Coordinate (m)	0.00			
New Layer	Y Coordinate (m)	0.00			
Pore Pressure	Dead Load (kN)	1,000.0			
Initial Pore Pressure	Live Load (kN)	0.0			
Final Pore Pressure	Transition Height (m)	0.00			
SPT, CPT/CPTu Data	Pile Density (kg/m ³)	2,400			
	Geometry				
New Load	Longitudinal Profile	Uniform			
Excavations	Cross-Section	Round			
New Excavation	Embedment, D (m)	21.00			
🖃 t-z/q-z Functions	Diameter, b (mm)	500			
New Function	Toe Area, At (m^2)	0.1963			
	Modulus, E (MPa)	30,000			

Pile Group Properties and Geometry (For Pile Group Settlement Analysis)

Project Site Plan View

Soil Layer(s) Input

General Input	Call Lawar Compart Cand (15m)		
Project Information	Soli Layer. Compact Sand (1511)		
Settings	🗆 General		
Depth Points	Name	Compact Sand (15m)	
Pile Data	Description		
Bolivia Demo Pile	Label		
Soil Lavers	Thickness (m)	15.00	
Compact Sand (15m)	Depth (m)	15.00	
Pore Pressure	Z Steps (m)	1.00	
Initial Pore Pressure	Layer Interpolation	Use layer average values	
Final Pore Pressure	Density (kg/m ³)	2,000	
🗏 SPT, CPT/CPTu Data	Initial Void Ratio, eo	0.000	
New Data	Resistance Parameters: Static		
E Loads	Bjerrum-Burland Coefficient, β	0.300	
New Load	Shaft Shear Strength (kPa)	0.0	
Excavations	Toe Resistance	Use unit resistance, rt	
New Excavation	Unit Toe Resistance, rt (kPa)	20.0	
L-2/Q-2 Functions	Resistance vs Movement		
New Function	Shaft t-z Function	New Function	
	Toe g-z Function	New Function	
	□ Compressibility		
	Compressibility	Janbu j and modulus number	
	Stress Exponent, j	1.00 - Elastic response soils	
	Preconsolidation Parameter	Use preconsolidation margin, $\Delta \sigma$	
	Preconsolidation Margin, Δσ' (kPa)	0.0	
	Virgin Modulus Number, m	300.0	
	Recompression Modulus Number, mr	300.0	

Add New Soil Layer

File	ata Site Analysis	Resul	ts Administration Help
in 🔁 😭	View/Edit Soil Layer.		▼ ▲ > ■ R _u R _s R _t ™.
· · · · · · · · · · · · · · · · · · · ·	Previous		
	Next		
🖃 Ger 🛅	Add New Soil Layer		
F 점	Delete Soil Layer		Layer: Compact Sand
	Copy Soil Layer		∃ General
	Paste Soil Layer		Name
	Movellp		Description
	Move Op		Label
⊟ Soi			Thickness (m)
C	Expand All		Depth (m)
😑 Por	Collapse All		Z Steps (m)
Initia	al Pore Pressure		Layer Interpolation
Final	Pore Pressure		Density (kg/m ³)
🚍 SPT, CF	PT/CPTu Data		Initial Void Ratio, e ₀
New	Data		Resistance Parameters: Static
E Loads			Bjerrum-Burland Coefficient, β
New	New Load		Shaft Shear Strength (kPa)
Excaval	tions		Toe Resistance
	Excavation		Unit Toe Resistance, rt (kPa)
New	Function		Resistance vs Movement
THE W	- criccion		Shaft t-z Eunction

New Soil Layer Input

🛅 🚰 🖼 🛃 🎒 Units: SI	▼ ● ● ■ R _u R _s R _t ■ ↓ Δ _s	$R_F + T \sigma' \sigma + \Box$
🐨 🚖 🐺 🛅 🛓 🖻 📽 🖄 🕼		
 General Input Project Information Settings Depth Points Pile Data Bolivia Demo Pile 16-Pile Group Soil Layers Compact Sand (15m) Clay (2m) Compact Sand (18 m) Pore Pressure Initial Pore Pressure Final Pore Pressure SPT, CPT/CPTu Data New Data Loads New Load Excavations New Excavation 	Image: Second (18 m) Image: Second (18 m) Image: Second (18 m) Image: Second (18 m) Image: Description Label Image: Thickness (m) Depth (m) Z Steps (m) Layer Interpolation Density (kg/m ³) Initial Void Ratio, e0 Image: Resistance Parameters: Static Bjerrum-Burland Coefficient, β Shaft Shear Strength (kPa) Toe Resistance Bearing Coefficient, Nt Image: Resistance vs Movement Shaft t-z Function	Compact Sand (18 m) 18.00 35.00 1.00 Use layer average values 2,000 0.000 0.300 0.0 Use resistance coefficient, Nt 30.0 New Eunction
E t-z/q-z Functions	Toe g-z Function	New Function New Function
	□ Compressibility	
	Compressibility	Janbu j and modulus number
	Stress Exponent, j	1.00 - Elastic response soils
	Preconsolidation Parameter	Use preconsolidation margin, Δσ
	Preconsolidation Margin, Δσ' (kPa)	0.0
	Virgin Modulus Number, m	400.0
	Recompression Modulus Number, mr	400.0

Enter Pore Pressures

Import CPT, CPTu, SPT Data

Fil	e Data Site Analysis Results	Administration	n Help
67	New Project	Ctrl+N	$R_u R_s R_t = 4 s R_F + \frac{1}{2} \sigma' \sigma + \Box$
2	Open Project	Ctrl+O	
2	Recent Projects		
	Save	Ctrl+S	Import Standard/Cone Penetration Data
	Save As		
6	Import Unisott Files		File Format
	Import SPT and CPT/CPTu Data		Number of Header Rows: 2 rows
1	Export	•	Numerical Format:
	Page Setup		
	Printer Setup		Data Delimiter: Records Capture:
3	Print Bolivia Demo CPTu + SPT N.txt	Ctrl+P	Treat consecutive delimiters as one 🔽 All Records
	Exit	Ctrl-X	Cone Penetration Data Units
	Pore Pressure		Depth: Col 1 💌 m 💌
	Final Pore Pressure		
	SPT, CPT/CPTu Data		
	Bolivia Demo CPTu + SPT N.txt		Sleeve Friction, fs: Col 3
	Loads		Pore Pressure, U2: Col 4 mof water
· · · · · ·	New Load		
	New Excavation		Standard Penetration Data
	t-z/q-z Functions		N-Index: Col 5
	New Function		
			R File Content
			1 Depth qc fs U2
			2 m bar bar m
			4 0.40 67.75 0.05
			5 0.45 07.44 0.08 6 0.50 66.28 0.08
			7 0 55 63 60 0 07
			8 0.60 56.82 0.06
			9 0.65 52.92 0.08
			Show Space character as • Show Tab character as »

CPT, CPTu, SPT Data

🖃 General Input					
Project Information					
Settings					
Depth Points					
📮 Pile Data					
Bolivia Demo Pile	Bolivia	Demo CPTu + SPT N tyt			
16-Pile Group	DOIIVIE	Denio el la Contra			
📮 Soil Layers	王				
Compact Sand (15m)					
Clay (2m)		General			
Compact Sand (18 m)		Name	Bolivia Demo CPTu	+ SPT N.txt	
Pore Pressure		Description	$\overline{}$		
Initial Pore Pressure		Shoulder Area Ratio, a	0.800		
Final Pore Pressure		Standard/Cone Penetra	tion Data		
		Depth, d (m)	qc (kPa)	fs (kPa)	U2 (kPa)
Bolivia Demo CPTu + SPT N.txt	1.	0.000	0.000	0.000	0.000
E Loads	2.	0.400	6,775.000	5.000	0.294
New Load	3.	0.450	6,744.000	8.000	2.060
Excavations	4.	0.500	6,628.000	8.000	0.098
	5.	0.550	6,360.000	7.000	24.721
New Function	6.	0.600	5,682.000	6.000	23.838
	7.	0.650	5,292.000	8.000	2.354
	8.	0.700	5,194.000	4.000	0.589
	9.	0.750	5,249.000	7.000	13.440
	10.	0.800	5,432.000	10.000	3.826
	11.	0.850	5,280.000	13.000	2.354
	12.	0.900	4,938.000	11.000	1.570
	13.	0.950	4,462.000	14.000	2.551
	14.	1.000	4,218.000	10.000	3.041
	15.	1.050	4,163.000	5.000	1.864
	40	1 100	4 122 000	10.000	0.001

Enter Loads and Excavations

Define t-z and q-z Functions

Apply t-z and q-z to Soil Layer(s)

General Input Project Information	Soil Layer: Compact Sand (18m)	
Settings	General	
Depth Points	Name	Compact Sand (18m)
Pile Data	Description	
Bolivia Demo Pile	Label	
16-Pile Group	Thickness (m)	18.00
Gempet Send (15m)	Depth (m)	35.00 Shaft: Compact Sand (17m - 35m)
Compact Sand (15m)	Z Steps (m)	1.00 Chaft: Compact Sand (0 - 15m)
Compact Sand (18m)	Laver Interpolation	Use laver a Shaft: Clay (15m 17m)
Pore pressure	Density (kg/m ³)	2 000 Shaft: Campact Sand (17m - 25m)
Initial Pore Pressure	Initial Void Ratio en	
Final Pore Pressure	Resistance Darameters: Static	N/A
🖃 SPT, CPT/CPTu Data	Bierrum-Burland Coefficient B	0.300
Bolivia Demo CPTu + SPT N.txt	Shaft Shear Strength (kPa)	0.0
E Loads		Use resistance coefficient Nt
Berm	Rearing Coefficient N	
Excavations		30.0
New Excavation	Chaft t a Function	Chafty Compact Cand (17m - 35m)
E t-z/q-z Functions	Shart t-2 Function	Tan
Shaft: Compact Sand (0 - 15m)	Toe q-2 Function	Toe
Shaft: Compact Sand (17m 25m)	Compressibility	
Too	Compressibility	Janbu j and modulus number
N/A	Stress Exponent, j	1.00 - Elastic response soils
	Preconsolidation Parameter	Use preconsolidation margin, $\Delta \sigma$
	Preconsolidation Margin, Δσ' (kPa)	0.0
	Virgin Modulus Number, m	400.0
	Recompression Modulus Number, mr	400.0

YES! But Does It Work?

- Static vs CPT, CPTu, SPT Analysis
- Embedment Analysis
- Add Transition Zone
- Pile group Settlement Analysis
- Head-Down Loading Test Simulation
- Bidirectional Loading Test Simulation

But What If?

- Non-Hydrostatic Pore Pressure
- Loads and Excavations are included
- Expanded-Base Pile
- Export results to Excel

Thank you for your

attention

We'd welcome your questions